Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.319
Filtrar
1.
Front Cell Dev Biol ; 12: 1363004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660622

RESUMO

The extracellular matrix (ECM) is a complex network of proteins and glycans, dynamically remodeled and specifically tailored to the structure/function of each organ. The malignant transformation of cancer cells is determined by both cell intrinsic properties, such as mutations, and extrinsic variables, such as the mixture of surrounding cells in the tumor microenvironment and the biophysics of the ECM. During cancer progression, the ECM undergoes extensive remodeling, characterized by disruption of the basal lamina, vascular endothelial cell invasion, and development of fibrosis in and around the tumor cells resulting in increased tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction and further malignant transformation potentiating the de-differentiation, proliferation and invasion of tumor cells. Interestingly, this fibrotic microenvironment is primarily secreted and assembled by non-cancerous cells. Among them, the cancer-associated fibroblasts (CAFs) play a central role. CAFs massively produce fibronectin together with type I collagen. This review delves into the primary interactions and signaling pathways through which fibronectin can support tumorigenesis and metastasis, aiming to provide critical molecular insights for better therapy response prediction.

2.
Int Immunopharmacol ; 133: 112029, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640715

RESUMO

Corneal wound healing requires epithelial reorganization and stromal extracellular matrix (ECM) remodeling, with ECM proteins such as Tenascin C (TnC) regulating and maintaining corneal homeostasis. The N-terminal globular domain and C-terminal fibrinogen-related domains of TnC are separated by epidermal growth factor (EGF)-like repeats, and upto fifteen fibronectin type III domains (Tn fn). Overexpression of Tn fn 1-5 and its splice variants occurs in varied pathologies. We have previously used Tn64 (a single chain variable fragment antibody cognate to Tn fn 1-5) to establish roles of Tn fn 1-5 in fibrotic pathologies such as rheumatoid arthritis and posterior capsular opacification. Here, we show that Tn64 binds to Tn fn repeats 3-5 (which constitute the major site for binding of soluble fibronectin within TnC). Unlike other Tn fn domains, Tn fn 3-5 displays no inhibition of fibronectin matrix assembly. Rather, the Tn fn 3-5 construct is pro-fibrotic and elicits increased expression of fibronectin. We examined corneal epithelial as well as stromal wound healing through Tn64 binding to Tn fn 3-5, using a human corneal epithelial cell (HCEC) line, primary cultures of human corneal fibroblasts (HCFs), and an ex-vivo corneal organ culture model. Tn64 enhanced proliferation and adhesion of corneal epithelial cells, while inhibiting the migration of corneal fibroblasts and myofibroblasts. Tn64 appears to attenuate inflammation through downregulation of TNF-α, prevent corneal fibrosis by limiting fibronectin polymerization, and promote regeneration of corneal epithelia and stroma, suggesting that it could be developed as a therapeutic agent for effective anti-fibrotic corneal wound healing.

3.
Cell Mol Biol Lett ; 29(1): 46, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561669

RESUMO

BACKGROUND: Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS: Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin ß1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS: (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin ß1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin ß1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin ß1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS: Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.


Assuntos
Vesículas Extracelulares , Neoplasias da Bexiga Urinária , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Glicoconjugados , Integrina beta1/metabolismo , Mamíferos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo
4.
Pflugers Arch ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563997

RESUMO

Complex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases. Since only little is known about their physiological role in kidney development, we aimed for analyzing the expression and role of fibronectin. In mouse, fibronectin was expressed during all stages of kidney development with significant changes over time. At embryonic day (E) 12.5 and E13.5, fibronectin lined the UB epithelium, which became less pronounced at E16.5 and then switched to a glomerular expression in the postnatal and adult kidneys. Similar results were obtained in human kidneys. Deletion of fibronectin at E13.5 in cultured metanephric mouse kidneys resulted in reduced kidney sizes and impaired glomerulogenesis following reduced cell proliferation and branching of the UB epithelium. Fibronectin colocalized with alpha 8 integrin and fibronectin loss caused a reduction in alpha 8 integrin expression, release of glial-derived neurotrophic factor and expression of Wnt11, both of which are promoters of UB branching. In conclusion, the ECM protein fibronectin acts as a regulator of kidney development and is a determinant of the final nephron number.

5.
J Biol Chem ; : 107283, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608728

RESUMO

Over the past three decades a diverse collection of small protein domains have been used as scaffolds to generate general-purpose protein-binding reagents using a variety of protein display and enrichment technologies. To expand the repertoire of scaffolds and protein surfaces that might serve this purpose, we have explored the utility of (i) a pair of anti-parallel alpha-helices in a small highly disulfide-bonded 4-helix bundle, the CC4 domain from Reversion-inducing Cysteine-rich Protein with Kazal Motifs (RECK), and (ii) a concave beta-sheet surface and two adjacent loops in the human FN3 domain, the scaffold for the widely used monobody platform. Using M13 phage display and Next Generation Sequencing (NGS), we observe that, in both systems, libraries of ∼30 million variants contain binding proteins with affinities in the low uM range for baits corresponding to the extracellular domains of multiple mammalian proteins. CC4- and FN3-based binding proteins were fused to the N- and/or C-termini of Fc domains and used for immunostaining of transfected cells. Additionally, FN3-based binding proteins were inserted into VP1 of AAV to direct AAV infection to cells expressing a defined surface receptor. Finally, FN3-based binding proteins were insertion into the Pvc13 tail fiber protein of an extracellular contractile injection system particle to direct protein cargo delivery to cells expressing a defined surface receptor. These experiments support the utility of CC4 helices B and C and of FN3 beta-strands C, D, and F together with adjacent loops CD and FG as surfaces for engineering general-purpose protein-binding reagents.

6.
Biomaterials ; 308: 122560, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38603826

RESUMO

Cells assemble fibronectin, the major extracellular matrix (ECM) protein, into fibrillar matrices, which serve as 3D architectural scaffolds to provide, together with other ECM proteins tissue-specific environments. Although recent approaches enable to bioengineer 3D fibrillar fibronectin matrices in vitro, it remains elusive how fibronectin can be co-assembled with other ECM proteins into complex 3D fibrillar matrices that recapitulate tissue-specific compositions and cellular responses. Here, we introduce the engineering of fibrillar fibronectin-templated 3D matrices that can be complemented with other ECM proteins, including vitronectin, collagen, and laminin to resemble ECM architectures observed in vivo. For the co-assembly of different ECM proteins, we employed their innate fibrillogenic mechanisms including shear forces, pH-dependent electrostatic interactions, or specific binding domains. Through recapitulating various tissue-specific ECM compositions and morphologies, the large scale multi-composite 3D fibrillar ECM matrices can guide fibroblast adhesion, 3D fibroblast tissue formation, or tissue morphogenesis of epithelial cells. In other examples, we customize multi-composite 3D fibrillar matrices to support the growth of signal propagating neuronal networks and of human brain organoids. We envision that these 3D fibrillar ECM matrices can be tailored in scale and composition to modulate tissue-specific responses across various biological length scales and systems, and thus to advance manyfold studies of cell biological systems.

7.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563322

RESUMO

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Assuntos
Dendrímeros , Nanopartículas , Osteoartrite , Humanos , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Dendrímeros/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Fósforo/uso terapêutico
8.
Front Cell Neurosci ; 18: 1357499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425428

RESUMO

Introduction: The lack of regenerative capacity of the central nervous system is one of the major challenges nowadays. The knowledge of guidance cues that trigger differentiation, proliferation, and migration of neural stem and progenitor cells is one key element in regenerative medicine. The extracellular matrix protein tenascin-C (Tnc) is a promising candidate to regulate cell fate due to its expression in the developing central nervous system and in the adult neural stem cell niches. Of special interest are the alternatively spliced fibronectin type III (FnIII) domains of Tnc whose combinatorial diversity could theoretically generate up to 64 isoforms in the mouse. A total of 27 isoforms have already been discovered in the developing brain, among others the domain combinations A1D, CD, and A124BCD. Methods: In the present study, these domains as well as the combination of the constitutively expressed FnIII domains 7 and 8 (78) were expressed in Chinese hamster ovary cells as pseudo-antibodies fused to the Fc-fragment of a human immunoglobulin G antibody. The fusion proteins were presented to primary mouse neural stem/progenitor cells (NSPCs) grown as neurospheres, either as coated culture substrates or as soluble additives in vitro. The influence of the domains on the differentiation, proliferation and migration of NSPCs was analyzed. Results: We observed that the domain combination A124BCD promoted the differentiation of neurons and oligodendrocytes, whereas the domain A1D supported astrocyte differentiation. The constitutively expressed domain 78 had a proliferation and migration stimulating impact. Moreover, most effects were seen only in one of the presentation modes but not in both, suggesting different effects of the Tnc domains in two- and three-dimensional cultures. Discussion: This knowledge about the different effect of the Tnc domains might be used to create artificial three-dimensional environments for cell transplantation. Hydrogels spiked with Tnc-domains might represent a promising tool in regenerative medicine.

9.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475352

RESUMO

Soft tissue defects, such as incisional hernia or pelvic organ prolapse, are prevalent pathologies characterized by a tissue microenvironment rich in fragile and dysfunctional fibroblasts. Precision medicine could improve their surgical repair, currently based on polymeric materials. Nonetheless, biomaterial-triggered interventions need first a better understanding of the cell-material interfaces that truly consider the patients' biology. Few tools are available to study the interactions between polymers and dysfunctional soft tissue cells in vitro. Here, we propose polypropylene (PP) as a matrix to create microscale surfaces w/wo functionalization with an HBII-RGD molecule, a fibronectin fragment modified to include an RGD sequence for promoting cell attachment and differentiation. Metal mold surfaces were roughened by shot blasting with aluminum oxide, and polypropylene plates were obtained by injection molding. HBII-RGD was covalently attached by silanization. As a proof of concept, primary abdominal and vaginal wall fasciae fibroblasts from control patients were grown on the new surfaces. Tissue-specific significant differences in cell morphology, early adhesion and cytoskeletal structure were observed. Roughness and biofunctionalization parameters exerted unique and combinatorial effects that need further investigation. We conclude that the proposed model is effective and provides a new framework to inform the design of smart materials for the treatment of clinically compromised tissues.

10.
Int J Biol Macromol ; 264(Pt 1): 130590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447826

RESUMO

Oocyte in vitro maturation (IVM) based on the follicular fluid (FF) environment can exploit untapped resources, however, what FF factors regulate oocyte maturation remains unclear. This work demonstrated that serum and FF significantly promoted oocyte polar body extrusion (PBE) and subsequent embryo development, and FF was especially effective. Fibronectin 1 (FN1) was predicted as one potential candidate to regulate oocyte maturation by proteomics. FN1 transcription obviously decreased, and the protein expression significantly increased and migrated to plasma membrane or even outside during oocyte IVM. Treatment with 10 ng/mL FN1 significantly improved oocyte PBE rate. FN1 significantly upregulated the percentage of regular spindle morphology, downregulated the γ-H2AX level, decreased the levels of ROS and apoptosis, and increased GSH and mitochondrion contents by ameliorating the expression of corresponding genes. Moreover, FN1 significantly increased the p-PI3K level to enhance the activation of PI3K signaling pathway. In conclusion, this study discovers and confirms that FN1 is one factor in FF that significantly enhances oocyte maturation, and the underlying mechanism is that FN1 ameliorates oocyte nuclear and cytoplasmic maturation by promoting the activation of PI3K signaling pathway.


Assuntos
Fibronectinas , Técnicas de Maturação in Vitro de Oócitos , Feminino , Animais , Suínos , Fibronectinas/genética , Fibronectinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Oócitos , Líquido Folicular/metabolismo
11.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543187

RESUMO

Glioblastoma, the most common and lethal primary adult brain tumor, cannot be successfully removed surgically due to its highly invasive nature. Therapeutically, approaches must be aimed at a systemic brain disease and not merely at a tumor located within the brain, unless a successful containment strategy can be found. Reelin, an extracellular matrix glycoprotein, plays an important role in neuronal migration and serves here as a natural stop signal. Interestingly, the expression of reelin is negatively associated with tumor grade and, within glioblastoma, correlates with increased overall survival. To further elucidate a potential biological reason for these findings, we looked at the cellular behavior of glioblastoma cell lines grown on a pure fibronectin matrix or a matrix with reelin inserts. While reelin had no significant effects on cellular metabolism, proliferation, or resistance to chemotherapeutic agents, it did significantly affect the cells' interaction with fibronectin. Both matrix attachment and detachment were modulated by reelin, and thus, the invasion and motility of cells interacting with a reelin-containing matrix were altered. The data presented in this work strongly suggest that reelin might be a potential modulator of underlying molecular mechanisms that contribute to glioblastoma invasion.

12.
FEBS J ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487972

RESUMO

Intestinal edema is a common manifestation of numerous gastrointestinal diseases and is characterized by the accumulation of fluid in the interstitial space of the intestinal wall. Technical advances in laser capture microdissection and low-biomass proteomics now allow us to specifically characterize the intestinal edema proteome. Using advanced proteomics, we identify peptides derived from antimicrobial factors with high signal intensity, but also highlight major contributions from the blood clotting system, extracellular matrix (ECM) and protease-protease inhibitor networks. The ECM is a complex fibrillar network of macromolecules that provides structural and mechanical support to the intestinal tissue. One abundant component of the ECM observed in Salmonella-driven intestinal edema is the glycoprotein fibronectin, recognized for its structure-function interplay regulated by mechanical forces. Using mechanosensitive staining of fibronectin fibers reveals that they are tensed in the edema, despite the high abundance of proteases able to cleave fibronectin. In contrast, fibronectin fibers increasingly relax in other cecal tissue areas as the infection progresses. Co-staining for fibrin(ogen) indicates the formation of a provisional matrix in the edema, similar to what is observed in response to skin injury, while collagen staining reveals a sparse and disrupted collagen fiber network. These observations plus the absence of low tensional fibronectin fibers and the additional finding of a high number of protease inhibitors in the edema proteome could indicate a critical role of stretched fibronectin fibers in maintaining tissue integrity in the severely inflamed cecum. Understanding these processes may also provide valuable functional diagnostic markers of intestinal disease progression in the future.

13.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474393

RESUMO

CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Fibronectinas/metabolismo , Células Ependimogliais/metabolismo , Células Endoteliais/metabolismo , Óxido de Magnésio/metabolismo , Retina/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Laminina/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus/metabolismo
14.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38469152

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts. Our results demonstrate that fibroblasts differentiated using TGFß, followed by transduction with the SOCS domain, exhibit significantly reduced levels of the contractile myofibroblast-marker, α-SMA. Furthermore, in support of its role to retard differentiation, we find that lung fibroblasts expressing the SOCS domain present with significantly reduced levels of α-SMA and fibrillar fibronectin after differentiation with TGFß. We show that adenoviral delivery of the SOCS domain in the fibrotic phase of experimental lung fibrosis in mice, significantly reduces collagen accumulation in disease lungs. These data underscore a novel function for the SOCS domain and its potential in ameliorating pathologic matrix deposition in lung fibroblasts and experimental lung fibrosis.

15.
Biotechnol Bioeng ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470332

RESUMO

In developing three-dimensional (3D) human skin equivalents (HSEs), preventing dermis and epidermis layer distortion due to the contraction of hydrogels by fibroblasts is a challenging issue. Previously, a fabrication method of HSEs was tested using a modified solid scaffold or a hydrogel matrix in combination with the natural polymer coated onto the tissue culture surface, but the obtained HSEs exhibited skin layer contraction and loss of the skin integrity and barrier functions. In this study, we investigated the method of HSE fabrication that enhances the stability of the skin model by using surface plasma treatment. The results showed that plasma treatment of the tissue culture surface prevented dermal layer shrinkage of HSEs, in contrast to the HSE fabrication using fibronectin coating. The HSEs from plasma-treated surface showed significantly higher transepithelial electrical resistance compared to the fibronectin-coated model. They also expressed markers of epidermal differentiation (keratin 10, keratin 14 and loricrin), epidermal tight junctions (claudin 1 and zonula occludens-1), and extracellular matrix proteins (collagen IV), and exhibited morphological characteristics of the primary human skins. Taken together, the use of plasma surface treatment significantly improves the stability of 3D HSEs with well-defined dermis and epidermis layers and enhanced skin integrity and the barrier functions.

16.
Exp Eye Res ; 242: 109880, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552713

RESUMO

Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula. The formation of macular neovascularization (MNV) and subretinal fibrosis of AMD is the most classic cause of the loss of vision in older adults worldwide. While the underlying causes of MNV and subretinal fibrosis remain elusive, the common feature of many common retinal diseases is changes the proportions of protein deposition in extracellular matrix (ECM) when compared to normal tissue. In ECM, fibronectin (FN) is a crucial component and plays a pivotal part not only in fibrotic diseases but also in the process of angiogenesis. The study aims to understand the role of ligand FN and its common integrin receptor α5ß1 on MNV, and to understand the molecular mechanism involved. To study this, the laser-induced MNV mouse model and the rhesus macaque choroid-retinal endothelial cell line (RF/6A) chemical hypoxia mode were established, and the FN-α5ß1 expression levels were detected by immunohistochemistry (IHC) and quantitative real-time PCR analysis (qRT-PCR). Fibronectin expression was silenced using small interfering RNA (siRNA) targeting FN. The tube formation and vitro scratch assays were used to assess the ability to form blood vessels and cell migration. To measure the formation of MNV, immunofluorescence, and Western blot assays were used. These results revealed that the expressions of FN and integrin α5ß1 were distinctly increased in the laser-induced MNV mouse model and in the RF/6A cytochemically induced hypoxia model, and the expression tendency was identical. After the use of FN siRNA, the tube formation and migration abilities of the RF/6A cells were lower, the ability of endothelial cells to proliferate was confined and the scope of damage caused by the laser in animal models was significantly cut down. In addition, FN gene knockdown dramatically inhibited the expression of Wnt/ß-catenin signal. The interaction of FN with the integrin receptor α5ß1 in the constructed model, which may act through the Wnt/ß-catenin signaling pathway, was confirmed in this study. In conclusion, FN may be a potential new molecular target for the prevention and treatment of subretinal fibrosis and MNV.

17.
Sci Rep ; 14(1): 4046, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374168

RESUMO

When exposed to oxidative and electrophilic stress, a protective antioxidant response is initiated by nuclear factor erythroid 2-related factor 2 (Nrf2). However, the extent of its importance in the forensic diagnosis of acute ischemic heart diseases (AIHD), such as myocardial infarction (MI), remains uncertain. On the other hand, immunohistochemical analyses of fibronectin (FN) and the terminal complement complex (C5b-9) prove valuable in identifying myocardial ischemia that precedes necrosis during the postmortem diagnosis of sudden cardiac death (SCD). In this study, we investigated the immunohistochemical levels of Nrf2, FN, and C5b-9 in human cardiac samples to explore their forensic relevance for the identification of acute cardiac ischemia. Heart samples were obtained from 25 AIHD cases and 39 non-AIHD cases as controls. Nrf2 was localized in the nuclei of cardiomyocytes, while FN and C5b-9 were detected in the myocardial cytoplasm. The number of intranuclear Nrf2 positive signals in cardiomyocytes increased in AIHD cases compared to control cases. Additionally, the grading of positive portions of cardiac FN and C5b-9 in the myocardium was also significantly enhanced in AIHD, compared to controls. Collectively, these results indicate that the immunohistochemical investigation of Nrf2 combined with FN, and/or C5b-9 holds the potential for identifying early-stage myocardial ischemic lesions in cases of SCD.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Fator 2 Relacionado a NF-E2 , Humanos , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Morte Súbita Cardíaca/patologia , Infarto do Miocárdio/patologia , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
18.
EBioMedicine ; 101: 105003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340557

RESUMO

BACKGROUND: Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS: Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS: Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTßR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTßR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTßR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION: This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING: This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fibronectinas , Inibidores de Checkpoint Imunológico , Proteínas dos Microfilamentos/metabolismo , Linhagem Celular Tumoral , Isoformas de Proteínas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Microambiente Tumoral
19.
Histochem Cell Biol ; 161(5): 367-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347221

RESUMO

Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.


Assuntos
Estenose da Valva Aórtica , Proteínas da Matriz Extracelular , Fibrose , Humanos , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/cirurgia , Fibrose/metabolismo , Fibrose/patologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/análise , Insuficiência da Valva Aórtica/metabolismo , Insuficiência da Valva Aórtica/patologia , Insuficiência da Valva Aórtica/cirurgia , Masculino , Septo Interventricular/patologia , Septo Interventricular/metabolismo , Feminino , Idoso , Pessoa de Meia-Idade
20.
Front Immunol ; 15: 1336476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380331

RESUMO

Glioblastoma (GBM) accounts for approximately half of all malignant brain tumors, and it remains lethal with a five-year survival of less than 10%. Despite the immense advancements in the field, it has managed to evade even the most promising therapeutics: immunotherapies. The main reason is the highly spatiotemporally heterogeneous and immunosuppressive GBM tumor microenvironment (TME). Accounting for this complex interplay of TME-driven immunosuppression is key to developing effective therapeutics. This review will explore the immunomodulatory role of the extracellular matrix (ECM) by establishing its contribution to the TME as a key mediator of immune responses in GBM. This relationship will help us elucidate therapeutic targets that can be leveraged to develop and deliver more effective immunotherapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/patologia , Imunoterapia , Terapia de Imunossupressão , Matriz Extracelular , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...